平行と合同 WAY+UP

! 学習のポイント

1 対頂角の性質

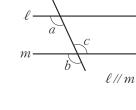
対頂角は等しい。

2 平行線の性質

平行な2直線に1つの直線 が交わるとき.

(1) 同位角は等しい。 (右図で、 $\angle a = \angle b$)

(2) 錯角は等しい。 (右図で、 $\angle a = \angle c$)



3 平行線になるための条件

2直線に1つの直線が交わるとき、次のどちらかが 成り立てば、その2直線は平行である。

(1) 同位角が等しい。

(2) 錯角が等しい。

4 三角形の内角,外角

- (1) 三角形の内角の和は180°である。
- (2) 三角形の外角は、それと隣り合わない2つの内角 の和に等しい。

5 多角形の内角、外角

- (1) n角形の内角の和は、 $180^{\circ} \times (n-2)$ である。
- (2) 多角形の外角の和は360°である。

6 合同な図形の性質

合同な図形では、対応する線分や角は等しくなる。

7 三角形の合同条件

(1) 3組の辺がそれぞれ等しい。

7

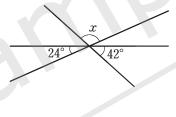
- (2) 2組の辺とその間の角がそれぞれ等しい。
- (3) 1組の辺とその両端の角がそれぞれ等しい。

確認問題

1 次の図で、 $\angle x$ の大きさを求めなさい。

 $\square(1)$

 $\square(2)$



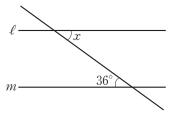
アドバイス

1 対頂角の性質

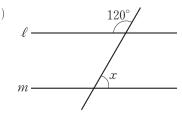
- (1) ∠xは, 56°の角の対頂角である。
- (2) 24°の角と42°の角の対頂角を考 える。

2 次の図で、 $\ell//m$ のとき、 $\angle x$ の大きさを求めなさい。

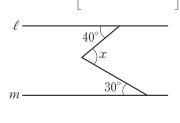
 $\square(1)$



 $\square(3)$

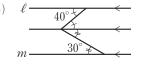


 \Box (4)



2 平行線の性質

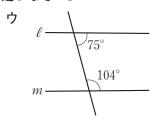
- (1) $\angle x$ は、77°の角の同位角である。
- (2) ∠xは、36°の角の錯角である。
- (3) 120°の角の同位角を考える。



11 平行と合同

□**3** 次の図の中で、2 直線 ℓ 、m が平行であるものを選びなさい。

ア



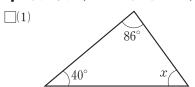
]

7

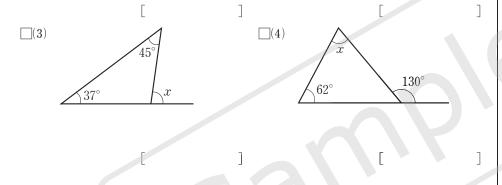
7

3 平行線になるための条件 同位角か錯角が等しいものを見つ ける。

4 次の図で、 $\angle x$ の大きさを求めなさい。



 $\square(2)$ 26°



5 多角形の内角と外角

4 三角形の内角と外角

(1)(2) 三角形の内角の和は180°。

(3)(4) 三角形の外角は、それと隣り 合わない2つの内角の和に等し

- 5 次の問いに答えなさい。
- □(1) 八角形の内角の和を求めよ。

(1) n角形の内角の和は, $180^{\circ} \times (n-2)$

□(2) 正五角形の1つの内角は何度か。

(2) 五角形の内角の和を求めて,5 等分する。

または、正五角形の1つの外角 を求めて、180°からひく。

□6 右の図の四角形ABCDにおいて、対角線 の交点をOとする。OA=OD, OB=OC の とき、AB=DC であることを、次のように 説明した。
をうめなさい。

 \mathbf{B}

「証明〕 △ABOと△DCOにおいて、

仮定より,

 $OA = \boxed{P} \cdots (1)$ OB= 1 ···(2)

対頂角より、 ∠AOB= <u>ウ</u> …3

ので,

△ABO≡△DCO よって、AB=DC

ア「 1]

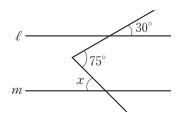
ウ[

I[

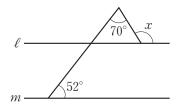
6 三角形の合同条件 △ABO≡△DCO を証明する。]

 \P 次の図で、 $\ell // m$ のとき、 $\angle x$ の大きさを求めなさい。

 $\square(1)$



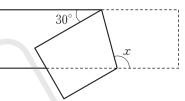
 $\square(2)$



[

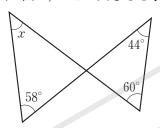
]

□ 2 右の図は、長方形の紙を折り曲げてできた図形である。 ∠xの大きさを求めなさい。

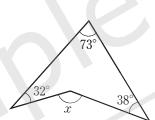


3 次の図で、 $\angle x$ の大きさを求めなさい。

 $\square(1)$



 $\square(2)$



]

]

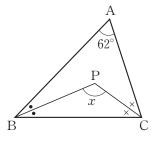
]

 \square (3) \angle BAC= \angle ADC=90°, \angle CAD=50°

 \square (4) \angle ABP= \angle CBP, \angle ACP= \angle BCP

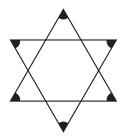
]

]

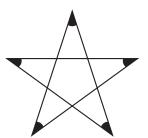


4 次の図で、印のついた角の大きさの和を求めなさい。

 $\square(1)$



 $\square(2)$



- 5 次の問いに答えなさい。
- □(1) 十二角形の内角の和と外角の和をそれぞれ求めよ。

内角の和「

] 外角の和[

]

]

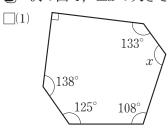
□(2) 内角の和が1260°である多角形は何角形か。

□(3) 1つの外角の大きさが30°である正多角形は正何角形か。

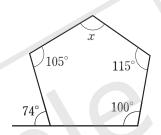
]

L

6 次の図で、 $\angle x$ の大きさを求めなさい。



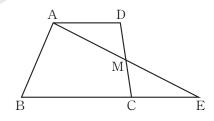
 $\square(2)$



]

□**7** AD//BC の台形ABCDにおいて、辺CDの中点をMとし、AM、BCの延長の交点をEとする。

このとき、AD=ECとなることを証明しなさい。



□ **る** 右の図は、長方形ABCDを対角線ACを折り目として折り返したものである。折り返して点Dが移動した点をD'、AD'とBCの交点をEとする。

このとき、 $\triangle ABE \equiv \triangle CD'E$ となることを証明しなさい。

