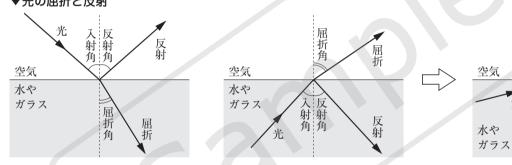
身近な物理現象

1 光


- (1) (1))…みずから光を出している物体。①からの光が(②))に届くと、①が見える。
-)に進むこと。光が直進するため、物体に光を当てると、物体と同じ形の (2) 光の直進…光が(1) $(\widehat{2})$)が地面などにできる。
- (3) 光の反射…光が物体に当たってはね返ること。光が反射するときは、入射角と反射角はつねに(①)という。)なる。これを光の(②
 - ・光源ではない物体が見えるのは、光源から出た光が物体に当たって(③))し、目に届くからである。
- (4) 乱反射…物体の表面には小さな凹凸があり、光が当たると、光がいろいろな方向に反射する。これを
 -)という。光がいろいろな方向に反射するため、どの方向からも物体を見ることができる。この (1)とき、反射する1つ1つの光では、入射角と(②))が等しくなっている。
- (5) 光の屈折…光が異なる物質の境界面で(①)

)こと。

- ・空気中→水やガラス中…屈折角は入射角より(②)
 -)0
- ・水やガラス中→空気中…屈折角は入射角より(③) と、光が空気中へ出ていかなくなる(④)

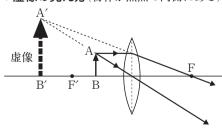
)。このとき、入射角が一定の角度より大きくなる)という現象が起こる。

▼光の屈折と反射

(6) 凸レンズ…凸レンズに平行な光を当てると1点に集まる。この点を(①

)という。

全反射


- ・光軸に平行な光は、凸レンズで(2)
-)して焦点を通る。
- ・凸レンズの中心を通る光は、そのまま(③)
-)する。
- ・焦点を通ってきた光は、凸レンズで屈折して光軸と(4)
-)に進む。
- (7) 実像と虚像…物体が焦点の外側にあるときにでき、スクリーンにうつすことができる像を(①))と いう。物体が焦点の内側にあるときにでき、凸レンズごしに見える像を(2))という。

▼実像のでき方

凸レンズ 実像 ⓑ焦点距離の2倍

- 光軸 ②物体より小さな実像
 - ^⑤物体と同じ大きさの実像
 - ©物体より大きな実像
 - ※F′上のとき、像はできない。

▼虚像の見え方(物体が焦点の内側にある)

- (8) 光の色…太陽光などの光は、いろいろな色が混ざって、(①) 色に見える。①色の光をプリズ ムに当てたり、虹を見たりすると、色ごとに分かれるようすがわかる。たとえば、赤色に見える物体は、
 - (2))色の光は反射し、それ以外の色の光は吸収している。

2 音

- (1) (①)または発音体…(②)して音を出している物体。
- (2) 音の伝わり方…空気が振動し、その振動が空気によって次々と伝わっていく。このような伝わり方を)という。この振動により耳の(②))が振動すると、音が聞こえる。空気のような気 体のほかに、液体や固体も音を伝えるが、振動する物質がない(③) 中では音は伝わらない。
- (3) 音の高さと大きさ
 - · (1))…音源が1秒間に振動する回数。単位)]。①が多い)[記号(③) ほど、音の高さが(④))なる。
 - ・弦の長さを(⑤))したり. 弦を張る力を(⑥)したり.)したりすると. 弦の太さを(⑦))なり、音が高くなる。
 - 音の大きさが(⑩)なる。
 -)すると、⑨が(⑫ ・弦をはじく力を(①)
- ②振幅が、音の大きさと 関係。 音を小さ くする。 音の高さと関係。

音を高く

)なり、音が大きくなる。

(4) **音の速さ**…空気中では、毎秒約 340 m (340 m/s)で伝わる。

音の速さ[m/s] = 音が伝わった(1))[m] ÷ 音が伝わるのにかかった(2)

▼音の高さと大きさ

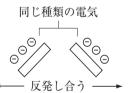
・空にあがる花火や雷では、光が見えてしばらくしてから、その音が聞こえる。これは、光の速さが、音の速さ に比べて非常に(③))ためである。

3 力

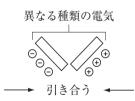
- (1) 力のはたらき…物体の形を変える. 物体を(①
-), 物体の(2) (速さや向き)を変える。
- (2) 接してはたらく力…ばねなどの変形した物体がもとの形にもどろうとしてはたらく(①). 机や床), 面と面との間で物体の運動をさまたげ などの面に力がはたらいたとき、面が垂直に押し返す(②) る向きにはたらく(③) などがある。変形した物体がもとの形にもどろうとする性質を弾性という。
- (3) 離れていてもはたらく力…地球がその中心に向かって物 ▼離れていてもはたらく力の例

)、摩擦によって電気を物体どう

しの間ではたらく(②)


), 磁石の磁極どうしの

間ではたらく(③)などがある。


(4) 力の大きさ…力の大きさを表す単位を(①

といい、記号は(②) と表す。地球上で、約 ← 反発し合う -(③)) gの物体にはたらく重力の大きさを1Nとする。

電気の力

▼力の表し方 作用点

- (5) 力の表し方…力には、力のはたらく点、向き、大きさの3つの要素がある。これらの要素は、1本の矢印で表 すことができる。
 - ・力のはたらく点…力のはたらく点を(①)という。力の矢 印は、①からかく。重力のように、物体全体にはたらく力は、物体の)を①とし、1本の矢印で代表させて表す。垂直抗力 や摩擦力のように、面全体にはたらく力は、力がはたらく面の
 -)を①とし、1本の矢印で代表させて表す。
 - ·力の向き…矢印の(④))で表す。

・力の大きさ…矢印の(⑤)

)で表す。矢印の長さは、力の大きさに(⑥

)させて表す。例

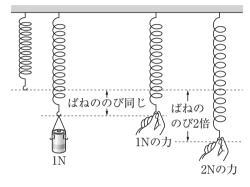
力の向き

作用線

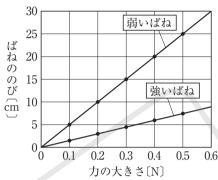
えば、1 Nの力を1 cm の長さの矢印で表す場合、3 Nの力は(⑦) cm の長さの矢印で表す。

力の大きさ

4 フックの法則


- (1) 力の大きさとばねののび…ばねは、手で引いたりするなど、(①)を加えるとのびる。このとき、

加える①が大きいほどばねののびは(②)


- (2) フックの法則…ばねののびは、ばねを引く力の大きさに(①
-)する。
- 力の大きさとばねののびとの関係をグラフに表すと、グラフは(②)
-)を通る直線になる。
- 1 Nあたりどれくらいのびるかわかっているばねを使えば、ばねののびを測定することで(③)
-)を

知ることができる。

▼力の大きさとばねののび

▼フックの法則

- (3) 誤差…実験での測定値は、真の値からずれていることがある。このずれを(①
-)という。このため、
- 測定値をグラフにまとめるときは、測定値を●印で記入し、なるべく多くの●印の近くを通る(②

- なめらかな曲線をかく。●印を結んで(③)
-)にしてはいけない。

5 質量と重さ

- (1) **質量…**物体そのものの量。単位にはグラム(g)やキログラム(kg)を用 いる。その値は上皿てんびんなどではかることができ、測定する場所が変 わっても変化(
- (2) 重さ…物体にはたらく()の大きさ。単位にはニュートン(N) を用いる。その値はばねばかりや台ばかりではかることができ、測定する場所 が変わると変化することがある。
- (3) 質量と重さのちがい…月面上での重力は、地球上での重力の約 $\frac{1}{6}$ である。地 球上で600gの物体を、地球上と月面上で上皿てんびんやばねばかりではかる 場合を考える。なお、100gの物体にはたらく重力の大きさを1Nとする。

▼質量と重さ・重力

質量5kg 重さ50N 重力50N

質量15kg 重さ150N 重力150N

- ・地球上…上皿てんびんでは(①
 -)gの分銅とつり合い, ばねばかりは(②
-) N を示す。

- ・月面ト…上皿てんびんでは(③)
-)gの分銅とつり合い, ばねばかりは(④)
-) N を示す。

6 力のつり合い

- (1) 力のつり合い…1 つの物体に 2 つの力がはたらき、その物体が ▼2 つの力のつり合い 動かないとき、2つの力は()という。
- (2) 2つの力がつり合う条件
 - ·2つの力は(①

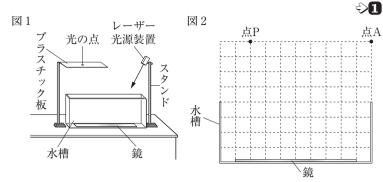
)上にある。

- ・2つの力の向きは(②
-)である。
- ・2つの力の大きさは(③
-)。
- (3) 2つの力のつり合いの例…ばねにつるして静止している物体で ①一直線上

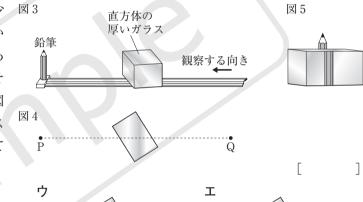
- ② 反対向き

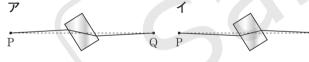
は、物体にはたらく重力と、ばねの(①

)がつり合っている。机の上で静止している物体では、物体

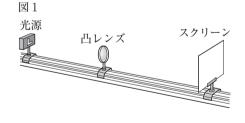

にはたらく重力と、机からの(②)

)がつり合っている。


	重要事項の確認	<u> </u>
	光	
		0
□2	光が空気中からガラス中や水中へななめに入射するとき、入射角 {=, >, <}	2
	屈折角になる。記号を選べ。	
	光がガラス中や水中から空気中へななめに入射するとき、境界面ですべてはね	3
	返って、空気中に光が出ていかなくなることがある。この現象を何というか。	
4	焦点の外側に物体があるとき、凸レンズを通してスクリーン上にうつる像を何と	@
	いうか。	
□6) 物体を凸レンズの焦点の外側から、焦点に近づけていくと、❹の像ができる位置	6 位置
	は凸レンズに対してどうなるか。また、できる❹の像の大きさはどうなるか。	大きさ
□6	焦点の内側に物体があるとき、凸レンズを通して見える像を何というか。	6
	6の像は、実際の物体と比べて、上下左右の向きは同じか、逆か。また、大きさ	7 向き
	は大きいか、小さいか。	大きさ
	音	
□8	・振動の幅が大きくなると、音はどうなるか。	8
□9		9
		0
		•
) 力のはたらきには、「物体の運動のようすを変える。」のほかに何があるか。あと	©
_	2つあげよ。	
		®
		0
_) 机や床などの面に力がはたらいたとき、面が垂直に押し返す力を何というか。	6
		6
) 力を矢印で表すとき、力の大きさは何で表されるか。 ・ 香力など嫌けなければなくく力は、佐里点がはこによるしような。	0
		18
	フックの法則	•
		19
	・ № で、何の伝則というか。 ・ № で、ばねののびが2倍になったとき、ばねを引く力の大きさは何倍になったか。	20
	・ 実験などで得られた測定値は、真の値からずれていることがある。このずれを何	
	というか。	.
	質量と重さ	
		23)
		29
		&
		3
	力のつり合い	
		②
) つり合う 2 つの力は、向きがどうなっているか。	3

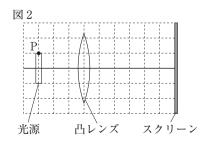

入試対策問題

- 1 光の性質について、次の問いに答えなさい。
- □(1) 図1のように、何も入っていない水槽の底に 鏡を置き、レーザー光源装置を用いて鏡に光を 当てたところ、半透明のプラスチック板に光の 点がうつった。図2はレーザー光源装置の光が 出たところを点A、プラスチック板にうつった 光の点の位置を点Pとして、それらの位置を表 したものである。次の①、②に答えよ。



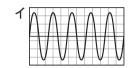
- ① 点 A から出た光が鏡に当たって点 P に届くまでの光の道すじを、図 2 にかけ。
- [図2に記入]
- ② 水槽に水を満たしてレーザー光源装置を動かさずに点 A から光を出したところ、水槽の底に置かれている 鏡に光が当たり、プラスチック板にその光の点がうつった。プラスチック板にうつったその光の点の位置につ いて正しく述べたものを、次のア~ウから選び、記号で答えよ。
 - ア 点 P の位置と変わらなかった。 イ 点 P の位置よりも、点 A に近づいた。
 - ウ 点 P の位置よりも、点 A から遠ざかった。
- □(2) 図3のように、光学台の端に鉛筆を1本立て、少 図3 し離れた位置に直方体の厚いガラスをななめに置い た。図4は、これを真上から見たときの模式図であ り、点Pは鉛筆の位置、点Qは観察者の位置をそ れぞれ表している。観察者が鉛筆を見たところ、図 5のように見えた。点Pから出た光のうち、ガラス を通って点Qに達した光の道すじを正しく表して いるものを、次のア~エから選び、記号で答えよ。

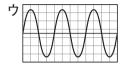
- ② 暗くした実験室で、図1のような光学台を用いて、図2のような位置に 光源、凸レンズ、スクリーンを置いたとき、スクリーンに光源の像がはっ きりとうつった。これについて、次の問いに答えなさい。 ◆1
- □(1) 凸レンズ側から見たスクリーンにうつった光源の像として、最も適当なものを、次のア~エから選び、記号で答えよ。

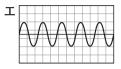


- □(3) 次に、凸レンズを固定し、光源だけを少し移動させたところ、像がぼやけた。 像がはっきりうつるようにスクリーンを移動させると、像は大きくなった。 このとき、光源とスクリーンはそれぞれ凸レンズに対して近づけたか、遠ざ けたか。

7

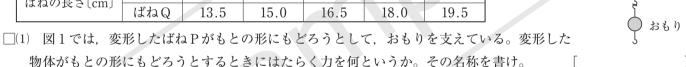

光源「


] スクリーン[


舎 音の性質について、次の問いに答えなさい。

 \Box (1) 2つのおんさ A. B を用意し、マイクを通してコンピュータで波形を調べた。それぞれのおんさをたたいて音 を出したところ、耳に聞こえた音は、おんさ A のほうがおんさ B よりも少し高かった。2 つのおんさを強弱を 変えてそれぞれ2回ずつたたいて鳴らしたところ、コンピュータの画面上には次のア〜エの4種類の波形が観測 された。おんさ A を強くたたいた場合に観測された波形はどれか。ア~エから選び、記号で答えよ。「

 \square (2) 右の図のように、ギターに張られた弦の1本を Ω の位 置ではじいたとき、最も高い音が出るのはどの場合か。表 のア〜エから選び、記号で答えよ。



記号	弦を押さ える位置	弦の張り方	
ア	A	強く張る	
1	В	一 短く振る	
ウ	A	弱く張る	
工	В	羽く深る	

② 図1のように、ばねPを天井に固定し、いろいろな質量のおもりをつるして、そのつどばね 図1 Pの長さを測定した。次に、ばねPをばねQにとりかえて、同様の実験を行った。表は、実験 の結果をまとめたものである。これについて、あとの問いに答えなさい。ただし、100 gの物 体にはたらく重力の大きさを1Nとする。 **\$3~6**

おもりの質量[g]		100	200	300	400	500
ばねの長さ[cm]	ばねP	15.0	16.0	17.0	18.0	19.0
MANDES (CIII)	ばねQ	13.5	15.0	16.5	18.0	19.5

 \square (2) 図1でばねPが静止したときに、つり合いの関係にある2つの力はどれとどれか。次の $\mathbf{P} \sim \mathbf{I}$ から2つ選び、 記号で答えよ。

ア ばねPが天井を引く力。

イ ばねPがおもりを引く力。

ウ おもりがばねPを引く力。 エ おもりにはたらく重力。

Γ 7

ばねP

□(3) 何もつるさないときのばね P の長さは何 cm か求めよ。

□(4) 表をもとに、ばねQに加わる力と、ばねQののびとの関係を表すグラフを、 図2にかけ。 図2に記入

図 2 10.0

 \square (5) ある質量の物体XをばねPにつるしたところ、ばねPの長さが20.0 cm に なって静止した。物体XをばねQにつるすと、ばねQの長さは何cmになるか 求めよ。

ば ね Q Ø 6.0 のび 2.0 1.0 2.0 3.0 4.0

□(6) ばねPとばねQで、のびにくいばねはどちらか。P、Qから選び、記号で答 えよ。また、そのように判断した理由を、簡単に書け。

記号[

理由[

□(7) 月面上でばね P に 900 g のおもりをつるすと、ばね P の長さは何 cm になると考えられるか。ただし、月面上 での重力の大きさは、地球上での重力の大きさの $\frac{1}{6}$ とする。

]

力の大きさ「N)