本書の特色

この本は、中学3年夏休み前までの復習で構成されたテキストです。基本問題を中心に編集しましたので、基礎力の充実に効果的です。

各課とも最初の例題4ページで基本的な問題を解きながら重要ポイントをおさえ、 残りの2ページの仕上げの問題でポイントを確認する…という流れになっています。

本書の使い方

- 例 題……各課の代表的な問題のパターンをとりあげて、その考え方を示してあります。すぐ下の類題でくり返し練習し、しっかり身につけましょう。
- 仕上げの問題………例題で学習したことがらを確実に身につけるための問題です。 じっくり時間をかけ、解けるようになるまで学習しましょう。 解けなかった問題は例題にもどって確認し、もう一度解いて みましょう。
- 総合問題……本書の総まとめの問題です。
- 計算・一行コーナー…入試問題でよく出題される計算と一行問題を載せています。 確実に解けるようになるまで取り組みましょう。

もくじ

〈中3数学〉

1	正負の数·式の計算 ····································			
2	1 次方程式			
3	連立方程式14			
4	1 次関数20			
5	平面図形・空間図形26			
6	三角形と四角形32			
7	データの活用・確率38			
8	多項式の計算44			
9	因数分解			
	平方根			
	2次方程式(1)62			
	2次方程式(2)68			
総合問題74				
計算	章・一行コーナー78			

10 平方根

	学習内容	○平方根 ○根号の変形	○平方根 ○根号を	の大小 ふくむ式の計算	○分母の有理(○根号をふくる	化 む式のいろいろな計算
(1) 次の数の平方根を求めよ。 ① 4 ② 10 ③ 5/36 (2) 次の数を根号を使わないで表せ。 ① √25 ② √64 ③ (√5)² 解法 (1) a>0のとき、aの平方根は√aと - √aの2つある。 (2) a>0のとき、√a²=a、(√a)²=aである。 (答) (1) ① ±2 ② ±√10 ③ ±√5/6 (2) ① 5 ② 8 ③ 5 次の問いに答えなさい。 (1) 次の数の平方根を求めよ。 □① 16 □② 0.01 □③ 16/81 [
2) 次の数を根号を使わないで表せ。 ① √25 ② √64 ③ (√5)² 解法 ② a>0のとき、aの平方根は√aと √aの2つある。 ② a>0のとき、√a²=a、(√a)²=aである。 ② (2) a>0のとき、√a²=a、(√a)²=aである。 ② (3) (√13)² ※ (1) ① ±2 ② ±√10 ③ ±√√5 6 (2) ① 5 ② 8 ③ 5 ※ (2) がの数の平方根を求めよ。 ② (3) √36 ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ③ (√13)² ③ (√13)² ※ (3) √50 ※ (3) √50 ※ (3) √50 ※ (4号の変形 根号の変形 根号ののとき、√a²b = √a²√b = a√b と変形できる。 (1) √8 = √4×2 = √2² √2 = 2√2 (2) √12 = √4×3 = √2² √3 = 2√3 (3) √50 = √25×2 = √3² √2 = √3 (3) (3) 5√2 ※ (5の数を変形して、√の中をできるだけ小さい整数にしなさい。 (1) √8 = √4×2 = √2² √2 = 2√2 (2) √12 = √4×3 = √2² √2 = 2√3 (3) √50 = √25×2 = √3² √2 = √3 (3) (3) 5√2 ※ (50) (1) 2√2 (2) 2√3 (3) 5√2 ※ (50) (25) (25) (25) (26) (27) (27) (27) (27) (27) (27) (27) (27						
2) 次の数を根号を使わないで表せ。 ① √25 ② √64 ③ (√5)² 解法 ② a>0のとき、aの平方根は√aと √aの2つある。 ② a>0のとき、√a²=a、(√a)²=aである。 ② (2) a>0のとき、√a²=a、(√a)²=aである。 ② (3) (√13)² ※ (1) ① ±2 ② ±√10 ③ ±√√5 6 (2) ① 5 ② 8 ③ 5 ※ (2) がの数の平方根を求めよ。 ② (3) √36 ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ② (√13)² ③ (√13)² ③ (√13)² ※ (3) √50 ※ (3) √50 ※ (3) √50 ※ (4号の変形 根号の変形 根号ののとき、√a²b = √a²√b = a√b と変形できる。 (1) √8 = √4×2 = √2² √2 = 2√2 (2) √12 = √4×3 = √2² √3 = 2√3 (3) √50 = √25×2 = √3² √2 = √3 (3) (3) 5√2 ※ (5の数を変形して、√の中をできるだけ小さい整数にしなさい。 (1) √8 = √4×2 = √2² √2 = 2√2 (2) √12 = √4×3 = √2² √2 = 2√3 (3) √50 = √25×2 = √3² √2 = √3 (3) (3) 5√2 ※ (50) (1) 2√2 (2) 2√3 (3) 5√2 ※ (50) (25) (25) (25) (26) (27) (27) (27) (27) (27) (27) (27) (27	① 4	② 10	$\frac{5}{3}$			
① √25 ② √64 ③ (√5)² 解法 ① a>0のとき、aの平方根は√aと -√aの2つある。 ② a>0のとき、√a²=a、(√a)²=aである。 ② *** ② *** ② *** ② ** ② ** ③ ** ③ ** ② ** ②			00			
解法 (1) $a>0$ のとき、 a の平方根は \sqrt{a} と $-\sqrt{a}$ の 2 つある。 (2) $a>0$ のとき、 $\sqrt{a^2}=a$, $(\sqrt{a})^2=a$ である。 (2) $a>0$ のとき、 $\sqrt{a^2}=a$, $(\sqrt{a})^2=a$ である。 (3) $\pm \frac{\sqrt{5}}{6}$ (2) ① 5 ② 8 ③ 5 次の問いに答えなさい。 1) 次の数の平方根を求めよ。 ① 16 ② 0.01 ② $\frac{16}{81}$ ② 次の数を根号を使わないで表せ。 ② 次の数を表表して、 \sqrt{a} と表す。 ② \sqrt{a} と \sqrt{a} をまとめて、 $\pm \sqrt{a}$ と表す。 ① $\sqrt{36}$ ② $\sqrt{36}$ ② $\sqrt{36}$ ② $\sqrt{36}$ ③ $\sqrt{36}$ ② $\sqrt{36}$ ③ $\sqrt{36}$ ③ $\sqrt{36}$ ② $\sqrt{36}$ ③ $\sqrt{36}$ ④ $\sqrt{36}$ ③ $\sqrt{36}$ ③ $\sqrt{36}$ ③ $\sqrt{36}$ ④						
(1) a>0のとき、aの平方根は√aと - √aの2つある。 (2) a>0のとき、√a²=a、(√a)²=aである。 【答】 (1) ① ±2 ② ±√10 ③ ± √5/6 (2) ① 5 ② 8 ③ 5 次の問いに答えなさい。 1) 次の数の平方根を求めよ。 ② 0.01 □③ 16 □② 0.01 □③ 16 81 ② 次の数を模号を使わないで表せ。 ③ √36 □② √0.25 □③ (√13)² 【例題 2 根号の変形 次の数を変形して、√の中をできるだけ小さい整数にしなさい。 1) √8 (2) √12 (3) √50 解法 a>0, b>0のとき、√a²b = √a²√b = a√b と変形できる。 (1) √8 = √4×2 = √2²×√2 = 2√2 (2) √12 = √4×3 = √2²×√3 = 2√3 (3) √50 = √25×2 = √5²×√2 = 5√2 【答】 (1) 2√2 (2) 2√3 (3) 5√2 次の数を変形して、√の中をできるだけ小さい整数にしなさい。		φ γ 01	◎ (∀ 0)			
次の問いに答えなさい。 1)次の数の平方根を求めよ。 ①① 16 ② 0.01 ② $\frac{16}{81}$ ② 次の数を根号を使わないで表せ。 ②① $\sqrt{36}$ ② $\sqrt{0.25}$ ② $\sqrt{\sqrt{13}}$ ② $\sqrt{\sqrt{12}}$ ② $\sqrt{\sqrt{2}}$ ② $\sqrt{2}$ ② $\sqrt{\sqrt{2}}$ ③ $\sqrt{\sqrt{2}}$ ② $\sqrt{\sqrt{2}}$ ③ $\sqrt{\sqrt{2}}$ ② $\sqrt{\sqrt{2}}$ ③ $\sqrt{\sqrt{2}}$ ② $\sqrt{\sqrt{2}}$ ③ $\sqrt{\sqrt{2}}$ ③ $\sqrt{\sqrt{2}}$ ② $\sqrt{\sqrt{2}}$ ③ $\sqrt{\sqrt{2}}$ ② $\sqrt{\sqrt{2}}$ ③ $\sqrt{\sqrt{2}}$ ③ $\sqrt{\sqrt{2}}$ ③ $\sqrt{\sqrt{2}}$ ② $\sqrt{\sqrt{2}}$ ③ $\sqrt{\sqrt{2}}$ ④ $\sqrt{\sqrt{2}}$ ④ $\sqrt{\sqrt{2}}$ ④ $\sqrt{\sqrt{2}}$ ④ $\sqrt{\sqrt{2}}$ ④ $\sqrt{2}$ ④ $\sqrt{\sqrt{2}}$ ④ $\sqrt{2}$ ④ $\sqrt{2}$ ④ 2	(1) $a>$			ある。		
(1) 次の数の平方根を求めよ。 □① 16 □② 0.01 □③ 16 81 [(答)	1) ① ±2 ② ±	$\sqrt{10} \qquad \boxed{3} \pm \frac{\sqrt{5}}{6}$	(2) ① 5 ②	8 ③ 5	
□① 16 □② 0.01 □③ $\frac{16}{81}$ □② 次の数を根号を使わないで表せ。 □① $\sqrt{36}$ □② $\sqrt{0.25}$ □③ $(\sqrt{13})^2$ □③ $(\sqrt$	次の問	ハに答えなさい。				
[] [] [] [] [] [] [] [] [] []	1) 次の	数の平方根を求めよ。				
回② $\sqrt{0.25}$ 回③ $(\sqrt{13})^2$ 例題 ② 根号の変形 次の数を変形して、 $\sqrt{}$ の中をできるだけ小さい整数にしなさい。 1) $\sqrt{8}$ (2) $\sqrt{12}$ (3) $\sqrt{50}$ 解法 $a>0$, $b>0$ のとき、 $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ と変形できる。 (1) $\sqrt{8}=\sqrt{4\times2}=\sqrt{2^2}\times\sqrt{2}=2\sqrt{2}$ (2) $\sqrt{12}=\sqrt{4\times3}=\sqrt{2^2}\times\sqrt{3}=2\sqrt{3}$ (3) $\sqrt{50}=\sqrt{25\times2}=\sqrt{5^2}\times\sqrt{2}=5\sqrt{2}$ を数があれば、根号の外に出すことができる。 (1) $2\sqrt{2}$ (2) $2\sqrt{3}$ (3) $5\sqrt{2}$ 本答 (1) $2\sqrt{2}$ (2) $2\sqrt{3}$ (3) $5\sqrt{2}$ 次の数を変形して、 $\sqrt{}$ の中をできるだけ小さい整数にしなさい。	□① 16		□② 0.01			
回② $\sqrt{0.25}$ 回③ $(\sqrt{13})^2$ 例題 ② 根号の変形 次の数を変形して、 $\sqrt{}$ の中をできるだけ小さい整数にしなさい。 (1) $\sqrt{8}$ (2) $\sqrt{12}$ (3) $\sqrt{50}$ 概法 $a>0$, $b>0$ のとき、 $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ と変形できる。 (1) $\sqrt{8}=\sqrt{4\times2}=\sqrt{2^2}\times\sqrt{2}=2\sqrt{2}$ (2) $\sqrt{12}=\sqrt{4\times3}=\sqrt{2^2}\times\sqrt{3}=2\sqrt{3}$ (3) $\sqrt{50}=\sqrt{25\times2}=\sqrt{5^2}\times\sqrt{2}=5\sqrt{2}$ を数があれば、根号の外に出すことができる。 (1) $2\sqrt{2}$ (2) $2\sqrt{3}$ (3) $5\sqrt{2}$ を変形して、 $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ ($a>0$, $b>0$) (4) 次の数を変形して、 $\sqrt{}$ の中をできるだけ小さい整数にしなさい。		[1	[1	[
例題 ② 根号の変形 次の数を変形して、 $\sqrt{}$ の中をできるだけ小さい整数にしなさい。 (1) $\sqrt{8}$ (2) $\sqrt{12}$ (3) $\sqrt{50}$ 解法 $a>0$, $b>0$ のとき、 $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ と変形できる。 (1) $\sqrt{8}=\sqrt{4\times2}=\sqrt{2^2}\times\sqrt{2}=2\sqrt{2}$ (2) $\sqrt{12}=\sqrt{4\times3}=\sqrt{2^2}\times\sqrt{3}=2\sqrt{3}$ (3) $\sqrt{50}=\sqrt{25\times2}=\sqrt{5^2}\times\sqrt{2}=5\sqrt{2}$ (4) $\sqrt{2}$ (5) $\sqrt{2}$ (7) $\sqrt{2}$ (8) $\sqrt{2}$ (8) $\sqrt{2}$ (9) $\sqrt{2}$ (9) $\sqrt{2}$ (1) $\sqrt{2}$ (2) $\sqrt{2}$ (3) $\sqrt{3}$ (3) $\sqrt{5}$ (4) $\sqrt{2}$ (5) $\sqrt{2}$ (6) $\sqrt{2}$ (7) $\sqrt{2}$ (8) $\sqrt{2}$ (8) $\sqrt{2}$ (9) $\sqrt{2}$ (9) $\sqrt{2}$ (1) $\sqrt{2}$ (1) $\sqrt{2}$ (2) $\sqrt{2}$ (3) $\sqrt{2}$ (3) $\sqrt{2}$ (4) $\sqrt{2}$ (5) $\sqrt{2}$ (6) $\sqrt{2}$ (7) $\sqrt{2}$ (8) $\sqrt{2}$ (9) $\sqrt{2}$ (9) $\sqrt{2}$ (9) $\sqrt{2}$ (1) $\sqrt{2}$ (1) $\sqrt{2}$ (2) $\sqrt{2}$ (3) $\sqrt{2}$ (3) $\sqrt{2}$ (4) $\sqrt{2}$ (5) $\sqrt{2}$ (6) $\sqrt{2}$ (7) $\sqrt{2}$ (8) $\sqrt{2}$ (8) $\sqrt{2}$ (9) $\sqrt{2}$ (10) $\sqrt{2}$ (11) $\sqrt{2}$ (12) $\sqrt{2}$ (13) $\sqrt{2}$ (14) $\sqrt{2}$ (15) $\sqrt{2}$ (15) $\sqrt{2}$ (16) $\sqrt{2}$ (17) $\sqrt{2}$ (17) $\sqrt{2}$ (18) $\sqrt{2}$ (19) $\sqrt{2}$ (19) $\sqrt{2}$ (19) $\sqrt{2}$ (20)	_					
次の数を変形して、 $$ の中をできるだけ小さい整数にしなさい。 $(1) \sqrt{8} \qquad (2) \sqrt{12} \qquad (3) \sqrt{50}$ 解法: $a>0, b>0 のとき、\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b} と変形できる。 (1) \sqrt{8}=\sqrt{4\times2}=\sqrt{2^2}\times\sqrt{2}=2\sqrt{2} (2) \sqrt{12}=\sqrt{4\times3}=\sqrt{2^2}\times\sqrt{3}=2\sqrt{3} (3) \sqrt{50}=\sqrt{25\times2}=\sqrt{5^2}\times\sqrt{2}=5\sqrt{2} \sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b} (a>0, b>0) (3) \sqrt{50} 根号のついた数の変形 根号の中の数を素因数分解して、2 乗になる数があれば、根号の外に出すことができる数があれば、根号の外に出すことができる数があれば、根号の外に出すことができる数があれば、根号の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができる数があれば、根子の外に出すことができるができるがあれば、根子の外に出すことができるがあれば、根子の外に出すことができるがあれば、根子の外に出すことができるがある数があれば、根子の外に出すことができるがあれば、根子の外に出すことができるがあれば、根子の外に出すことができるがあれば、根子の外に出すことができるがあれば、根子の外に出すことができるがあれば、根子の外に出すことができるがあれば、根子の外に出すことができるがあれば、れば、れば、根子の外に出するなが、またができるがあれば、れば、表述を表述を表述を表述を表述を表述を表述とない。$	<u> </u>	5	□② √0.25		$\Box 3 (\sqrt{13})^2$	
次の数を変形して、 $$ の中をできるだけ小さい整数にしなさい。 (1) $\sqrt{8}$ (2) $\sqrt{12}$ (3) $\sqrt{50}$ 解法 $a>0$, $b>0$ のとき、 $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ と変形できる。 (1) $\sqrt{8}=\sqrt{4\times2}=\sqrt{2^2}\times\sqrt{2}=2\sqrt{2}$ (2) $\sqrt{12}=\sqrt{4\times3}=\sqrt{2^2}\times\sqrt{3}=2\sqrt{3}$ (3) $\sqrt{50}=\sqrt{25\times2}=\sqrt{5^2}\times\sqrt{2}=5\sqrt{2}$ (4) $2\sqrt{2}$ (5) $2\sqrt{3}$ (7) $2\sqrt{2}$ (7) $2\sqrt{3}$ (8) $2\sqrt{2}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{2}$ (1) $2\sqrt{2}$ (2) $2\sqrt{3}$ (3) $2\sqrt{2}$ (5) $2\sqrt{3}$ (6) $2\sqrt{2}$ (7) $2\sqrt{3}$ (8) $2\sqrt{2}$ (9) $2\sqrt{3}$ (9) $2\sqrt{2}$ (1) $2\sqrt{2}$ (2) $2\sqrt{3}$ (3) $2\sqrt{2}$ (3) $2\sqrt{2}$ (4) $2\sqrt{2}$ (5) $2\sqrt{3}$ (7) $2\sqrt{2}$ (8) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (1) $2\sqrt{2}$ (2) $2\sqrt{3}$ (3) $2\sqrt{2}$ (3) $2\sqrt{2}$ (4) $2\sqrt{3}$ (5) $2\sqrt{2}$ (7) $2\sqrt{3}$ (8) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (1) $2\sqrt{2}$ (2) $2\sqrt{3}$ (3) $2\sqrt{2}$ (3) $2\sqrt{2}$ (4) $2\sqrt{3}$ (5) $2\sqrt{3}$ (7) $2\sqrt{3}$ (8) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (9) $2\sqrt{3}$ (1) $2\sqrt{3}$ (1) $2\sqrt{3}$ (2) $2\sqrt{3}$ (3) $2\sqrt{3}$ (3) $2\sqrt{3}$ (4) $2\sqrt{3}$ (5) $2\sqrt{3}$ (7) $2\sqrt{3}$ (8) $2\sqrt{3}$ (9)]]]	[
(1) $\sqrt{8}$			- グキッギはよそい動物	なにし 大 や 1 、		
解法 $a>0$, $b>0$ のとき, $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ と変形できる。 (1) $\sqrt{8}=\sqrt{4\times2}=\sqrt{2^2}\times\sqrt{2}=2\sqrt{2}$ (2) $\sqrt{12}=\sqrt{4\times3}=\sqrt{2^2}\times\sqrt{3}=2\sqrt{3}$ (3) $\sqrt{50}=\sqrt{25\times2}=\sqrt{5^2}\times\sqrt{2}=5\sqrt{2}$ (3) $\sqrt{50}=\sqrt{25\times2}=\sqrt{5^2}\times\sqrt{2}=5\sqrt{2}$ (4) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (5) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (6) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (7) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (8) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (8) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (8) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (8) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (8) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (9) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (9) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (10) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (11) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (12) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (13) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (14) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (15) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (15) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (16) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (17) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (18) $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ (19) $\sqrt{a^2b}=a\sqrt{b}$ (19) $\sqrt{a^2b}=ab$		と変形して、√の中で		以にしなるい。	(3) $\sqrt{50}$	
$a>0$, $b>0$ のとき, $\sqrt{a^2b}=\sqrt{a^2}\sqrt{b}=a\sqrt{b}$ と変形できる。 $(1) \sqrt{8}=\sqrt{4\times2}=\sqrt{2^2}\times\sqrt{2}=2\sqrt{2}$ $(2) \sqrt{12}=\sqrt{4\times3}=\sqrt{2^2}\times\sqrt{3}=2\sqrt{3}$ $(3) \sqrt{50}=\sqrt{25\times2}=\sqrt{5^2}\times\sqrt{2}=5\sqrt{2}$ 巻			(2) 712		(0) \(\psi\)00	
(1) $\sqrt{8} = \sqrt{4} \times 2 = \sqrt{2^2} \times \sqrt{2} = 2\sqrt{2}$ 根号の中の数を素因数分解して、2乗になる数があれば、根号の外に出すことができる数があれば、根号の外に出すことができる (1) $2\sqrt{2}$ (2) $2\sqrt{3}$ (3) $5\sqrt{2}$ 次の数を変形して、 $\sqrt{a^2b} = \sqrt{a^2}\sqrt{b} = a\sqrt{b}$ ($a > 0$, $b > 0$)		か $>$ 0 のとき、 $\sqrt{a^2b} = \sqrt{a}$	$\frac{a^2}{a^2}\sqrt{b} = a\sqrt{b}$ と変形で	きる。		
(2) $\sqrt{12} = \sqrt{4} \times 3 = \sqrt{2}^2 \times \sqrt{3} = 2\sqrt{3}$ (3) $\sqrt{50} = \sqrt{25 \times 2} = \sqrt{5}^2 \times \sqrt{2} = 5\sqrt{2}$ (1) $2\sqrt{2}$ (2) $2\sqrt{3}$ (3) $5\sqrt{2}$ 次の数を変形して、 $\sqrt{}$ の中をできるだけ小さい整数にしなさい。	(1) $\sqrt{8}$	$=\sqrt{4\times2}=\sqrt{2^2}\times\sqrt{2}=$	$2\sqrt{2}$			· 烟1 一 0 垂 12 去
(3) $\sqrt{50} = \sqrt{25} \times 2 = \sqrt{5^2} \times \sqrt{2} = 5\sqrt{2}$	(2) $\sqrt{12}$	$2 = \sqrt{4 \times 3} = \sqrt{2^2} \times \sqrt{3} =$	$2\sqrt{3}$			
答》 (1) $2\sqrt{2}$ (2) $2\sqrt{3}$ (3) $5\sqrt{2}$ 次の数を変形して、 $\sqrt{}$ の中をできるだけ小さい整数にしなさい。	(3) $\sqrt{50}$	$\overline{0} = \sqrt{25 \times 2} = \sqrt{5^2} \times \sqrt{2} =$	$=5\sqrt{2}$			
、次の数を変形して、√の中をできるだけ小さい整数にしなさい。 「「「「「「「」」「「」「「」「「」」「「」「」「「」」「「」」「「」」「「	(答)	1) $2\sqrt{2}$ (2) $2\sqrt{3}$	(3) $5\sqrt{2}$	Va .	- γα γ υ — αγ υ (α	, 0, 0, 0,
	W = W!	* 		d.) = 1 - 2 - 5		
$ \Box /2\rangle$ $ \Box /2\rangle$ $ \Box /2\rangle$	、次の数: (1) √ <u>18</u>	を変形して,√ の中を	:できるだけ小さい整数 □(2) √24	奴にしなさい。	$\square(3)$ $\sqrt{56}$	

[]

]

例題 3 平方根の大小

次の各組の数の大小を,不等号を使って表しなさい。

(1) 2,
$$\sqrt{5}$$

(2)
$$-\sqrt{7}$$
, -3

解法

- (1) $2=\sqrt{4}$ で、4<5 だから、 $\sqrt{4} < \sqrt{5}$ $\Rightarrow xht, 2 < \sqrt{5}$
- (2) $-3 = -\sqrt{9}$ で、7 < 9 だから、 $\sqrt{7} < \sqrt{9}$ 2数は負の数であるから、 $-\sqrt{7}>-\sqrt{9}$ すなわち、 $-\sqrt{7}>-3$

Γ

平方根の大小

a, b が正の数で, a < b なら lt, $\sqrt{a} < \sqrt{b}$

負の数は0より小さく,絶対 値が大きいほど小さい。

答 (1) $2 < \sqrt{5}$ (2) $-\sqrt{7} > -3$

- 滑 次の各組の数の大小を、不等号を使って表しなさい。

$$\Box$$
(1) $\sqrt{4}$, $\sqrt{6}$

$$\Box(2)$$
 3, $\sqrt{8}$

$$\Box(3) \quad -\sqrt{9}, \quad -\sqrt{2}$$

$$\Box$$
(4) $-\sqrt{15}$, -4

7

7

$$\Box(5)$$
 $\sqrt{3}$, 0, $-\sqrt{10}$

$$\Box$$
(6) $\sqrt{0.4}$, 0.4

例題 4 根号をふくむ式の乗法・除法

次の計算をしなさい。

(1)
$$\sqrt{5} \times \sqrt{2}$$

$$(2) \quad \sqrt{12} \times \sqrt{3}$$

(3)
$$\sqrt{21} \div \sqrt{3}$$

解法

$$(1) \quad \sqrt{5} \times \sqrt{2} = \sqrt{5 \times 2} = \sqrt{10}$$

(3) $\sqrt{21} \div \sqrt{3} = \frac{\sqrt{21}}{\sqrt{3}} = \sqrt{\frac{21}{3}} = \sqrt{7}$

(2)
$$\sqrt{12} \times \sqrt{3} = \sqrt{12 \times 3} = \sqrt{36} = 6$$

平方根の積と商

a, bが正の数のとき, $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ $\sqrt{a} \div \sqrt{b} = \sqrt{\frac{a}{b}}$

- **答** (1) $\sqrt{10}$ (2) 6 (3) $\sqrt{7}$

Γ

4 次の計算をしなさい。

$$\Box(1)$$
 $\sqrt{2} \times \sqrt{7}$

$$\square$$
(2) $-\sqrt{5} \times \sqrt{13}$

Γ

7

 $\square(3) \quad \sqrt{27} \times \sqrt{8}$

 \square (4) $\sqrt{12} \times (-\sqrt{6})$

]

 \Box (5) $\sqrt{18} \div \sqrt{3}$

 \square (6) $\sqrt{20} \div \sqrt{5}$

]

Γ

 \square (8) $-\sqrt{12} \div \sqrt{6}$

 $\Box(7)$ $\sqrt{32} \div \sqrt{2}$

例題 5 分母の有理化

次の数の分母を有理化しなさい。

$$(1) \quad \frac{1}{\sqrt{3}}$$

(2)
$$\frac{3}{\sqrt{6}}$$

解法

(1) 分母, 分子に $\sqrt{3}$ をかける。

$$\frac{1}{\sqrt{3}} = \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{3}$$

(2)
$$\frac{3}{\sqrt{6}} = \frac{3 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} = \frac{3\sqrt{6}}{6} = \frac{\sqrt{6}}{2}$$

- **(2)** $\frac{\sqrt{3}}{3}$ (2) $\frac{\sqrt{6}}{2}$

分母に根号がない形で表すには、 分母 と分子に同じ数をかける。このように変 形することを, 分母を有理化するという。

$$\frac{b}{\sqrt{a}} = \frac{b \times \sqrt{a}}{\sqrt{a} \times \sqrt{a}} = \frac{b\sqrt{a}}{a}$$

5 次の数の分母を有理化しなさい。

 $\Box(1) \quad \frac{4}{\sqrt{3}}$

 $\square(2) \quad \frac{\sqrt{3}}{\sqrt{2}}$

 $\square(3) \quad \sqrt{\frac{3}{5}}$

 $\Box(4) \quad \frac{2}{\sqrt{2}}$

 $\Box(5) \quad \frac{6}{\sqrt{8}}$

例題 6 根号をふくむ式の加法・減法

次の計算をしなさい。

(1) $3\sqrt{2} + 4\sqrt{2}$

(2) $\sqrt{12} - \sqrt{27}$

(3) $\sqrt{5} + \frac{10}{\sqrt{5}}$

解法

- (1) $3\sqrt{2} + 4\sqrt{2} = (3+4)\sqrt{2} = 7\sqrt{2}$
- (2) $\sqrt{12} \sqrt{27} = 2\sqrt{3} 3\sqrt{3} = (2-3)\sqrt{3} = -\sqrt{3}$
- $(3) \quad \sqrt{5} + \frac{10}{\sqrt{5}} = \sqrt{5} + 2\sqrt{5} = (1+2)\sqrt{5} = 3\sqrt{5}$ 分母を有理化する。 $\frac{10}{\sqrt{5}} = \frac{10\times\sqrt{5}}{\sqrt{5}\times\sqrt{5}} = \frac{10\sqrt{5}}{5} = 2\sqrt{5}$

- **答** (1) $7\sqrt{2}$ (2) $-\sqrt{3}$ (3) $3\sqrt{5}$

同じ数の平方根の和と差

同じ数の平方根をふくむ式 は、同類項と同じように、ま とめることができる。

Γ

7

7

7

 $m\sqrt{a} + n\sqrt{a} = (m+n)\sqrt{a}$ $m\sqrt{a}-n\sqrt{a}=(m-n)\sqrt{a}$

- 6 次の計算をしなさい。
- \Box (1) $2\sqrt{7} + 4\sqrt{7}$

 \Box (2) $5\sqrt{5} - 3\sqrt{5}$

]

10	平方根

$$\Box$$
(3) $\sqrt{18} + \sqrt{8}$

$$\Box$$
(4) $\sqrt{63} - \sqrt{28}$

$$\Box$$
(5) $\sqrt{3} + \frac{6}{}$

$$\Box(5) \quad \sqrt{3} + \frac{6}{\sqrt{3}}$$

$$\Box(6) \quad \sqrt{24} - \frac{18}{\sqrt{6}}$$

7

]

$$\Box(7) \quad \sqrt{5} + \sqrt{45} - \sqrt{20}$$

$$(8) \quad -\sqrt{32} + \sqrt{18} - \sqrt{2}$$

●例題 7 根号をふくむ式のいろいろな計算

Γ

次の計算をしなさい。
(1)
$$\sqrt{3}(2+\sqrt{3})$$

(2)
$$(\sqrt{2}+2)(\sqrt{5}-3)$$

]

$$(3) \quad (\sqrt{3}+1)(\sqrt{3}-2)$$

解法

$$(1) \quad \sqrt{3} \left(2 + \sqrt{3}\right) = \sqrt{3} \times 2 + \sqrt{3} \times \sqrt{3} \quad \leftarrow 分配法則 \quad m(a+b) = ma + mb \ を使う。$$

$$=2\sqrt{3}+3$$

$$= 2\sqrt{3} + 3$$
(2) $(\sqrt{2} + 2)(\sqrt{5} - 3) = \sqrt{2} \times \sqrt{5} + \sqrt{2} \times (-3) + 2 \times \sqrt{5} + 2 \times (-3)$ ←式を展開する。

 $=\sqrt{10}-3\sqrt{2}+2\sqrt{5}-6$

$$(a+b)(c+d) = ac+ad+bc+bd$$

(3)
$$(\sqrt{3}+1)(\sqrt{3}-2) = (\sqrt{3})^2 + (1-2)\sqrt{3} + 1 \times (-2)$$

= $3-\sqrt{3}-2$

←乗法公式①を利用して展開する。
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

$$=1-\sqrt{3}$$

(1)
$$2\sqrt{3}+3$$

(1)
$$2\sqrt{3}+3$$
 (2) $\sqrt{10}-3\sqrt{2}+2\sqrt{5}-6$

(3)
$$1 - \sqrt{3}$$

7 次の計算をしなさい。

$$\square(1) \quad \sqrt{2} \ (\sqrt{3} - 4)$$

$$\square(2) \quad \sqrt{7} \left(\sqrt{7} + 2 \right)$$

 \Box (3) $\sqrt{3} (\sqrt{27} + \sqrt{6})$

 \square (4) $\sqrt{5} \left(\sqrt{45} - \sqrt{15} \right)$

 \Box (5) $(\sqrt{3}+1)(\sqrt{2}-2)$

 \Box (6) $(\sqrt{5}-3)(\sqrt{5}+6)$

7

 $\Box(7) \quad (\sqrt{10} + \sqrt{2})(\sqrt{10} - \sqrt{2})$

 \square (8) $(2\sqrt{3} - \sqrt{5})(2\sqrt{3} + \sqrt{5})$

 $\square (10) \quad (3-\sqrt{6})^2$

7

 \Box (9) $(\sqrt{5} + \sqrt{2})^2$

]]

•——•	仕上げ	の問題	•	—·]
1 次の問いに答えなさい。				
□① 36	□② 0.09		$\square \boxed{3} \frac{7}{9}$	
[(2) 次の数を根号を使わないで表せ □① √64	· □② √0.16		$\boxed{3} (-\sqrt{10})^2$	
	モッ シリレオ シャ、お	「 「 で 楽なりっし そ タン、 Median Marketing A		[]
② 次の数を変形して、√の中をで□(1) √28	さるだけ小さい整 □(2) √32	※ 級にしなさい。	\square (3) $\sqrt{75}$	
[]		[]		[]
③ 次の各組の数の大小を、不等号を $\Box(1)$ $\sqrt{7}$, $\sqrt{5}$	使って表しなさい	小。 → 例題 3 □(2) 4, √13		
$\square(3) -\sqrt{3}, -\sqrt{6}$		$\Box(4) -5, -\sqrt{24}$	[]
]	[]
$\square(5) -\sqrt{2}, \ \sqrt{5}, \ -\sqrt{3}$		\Box (6) $\sqrt{0.9}$, 0.9		
[[]
$\Box(1) \sqrt{7} \times \sqrt{3}$		$\square(2) \sqrt{3} \times (-\sqrt{10})$		
$\square(3) \sqrt{6} \times \sqrt{18}$	[[]
$\square(5) \sqrt{21} \div \sqrt{7}$	[[]
$\Box(7) \sqrt{12} \div \sqrt{3}$	[[]
	г			

5 次の数の分母を有理化しなさい。 → 例題 5

$$\Box$$
(1) $\frac{1}{\sqrt{5}}$

$$\square(2) \quad \frac{\sqrt{7}}{\sqrt{3}}$$

$$\square$$
(3) $\sqrt{\frac{4}{11}}$

$$\Box(4) \quad \frac{6}{\sqrt{6}}$$

[]

$$\Box$$
(5) $\frac{7}{\sqrt{14}}$

$$\Box(6) \quad \frac{3\sqrt{3}}{\sqrt{8}}$$

7

]

1

7

Γ

⑤ 次の計算をしなさい。 → 例題 6

$$\Box$$
(1) $5\sqrt{3} + 3\sqrt{3}$

$$(2) \quad 3\sqrt{2} - 5\sqrt{2}$$

$$\Box$$
(3) $\sqrt{24} + \sqrt{96}$

$$\square(4) \quad \sqrt{45} - \sqrt{20}$$

$$\Box$$
(5) $\sqrt{7} + \frac{14}{\sqrt{7}}$

$$\Box$$
(6) $\sqrt{135} - \frac{60}{\sqrt{15}}$

$$\Box$$
(7) $\sqrt{8} + \sqrt{50} - \sqrt{32}$

$$\square$$
(8) $-\sqrt{96} + \sqrt{24} - \sqrt{54}$

7 次の計算をしなさい。 **→ 例題 7**

$$\Box$$
(1) $\sqrt{5}(3-\sqrt{5})$

$$\square(2) \quad \sqrt{3} \ (\sqrt{3} + 2)$$

$$\square$$
(3) $\sqrt{2} (\sqrt{18} + \sqrt{6})$

$$\square(4) \quad \sqrt{6} \, (\sqrt{12} - \sqrt{54})$$

$$\Box(5) \quad (\sqrt{7} + \sqrt{3})(\sqrt{7} - \sqrt{3})$$

$$\square(5) \quad (\sqrt{7} + \sqrt{3})(\sqrt{7} - \sqrt{3})$$

$$\Box$$
(6) $(3\sqrt{2} - \sqrt{6})(3\sqrt{2} + \sqrt{6})$

$$\square(7) \quad (\sqrt{6} + \sqrt{2})^2$$

$$\square$$
(8) $(5-\sqrt{13})^2$

]